
S NS : A S imple Model for
Understanding Optimal
Hard Real-Time
Multiprocessor S cheduling

by Greg Levin

based on work with Caitlin Sadowski, Ian Pye,
 and Scott Brandt

2

Real-time Scheduling Algorithms

 In a real-time environment, multiple
processes with computational deadlines
compete for processor time.

 "Hard real-time" means it is never okay to miss
deadlines

 We consider the problem of scheduling a
collection of periodic processes running
on a multiprocessor system.

3

Example

 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

4

Example

 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

5

Periodic Tasks

 A periodic task is one that requires a
certain amount of work be completed
within each period.

 If a task has period p and workload c, then its
utilization u = c / p is the fraction of each period
that the task must be running.

6

Our Goal (version 1)

 Given a set of N tasks on M processors,
find a feasible scheduling of tasks so that
all deadlines are met (if such a scheduling
exists)

 We say that a scheduling algorithm is "optimal"
if it find some successful scheduling for any task
set for which some correct scheduling exists

7

Assumptions
 All processors are equivalent

 Tasks may migrate between processors

 Tasks are independent, and may not run simultaneously on
two processors

 No overhead for context switches or migrations
 This model is theoretical, not realistic
 In practice, these overheads lead to the use of

suboptimal scheduling algorithms

8

Theorem 1

 Any collection of tasks whose total
(summed) utilization does not exceed
M and whose individual utilizations do not
exceed 1 has a feasible scheduling.

 Proof: Smaller work intervals can
arbitrarily approximate a task's fluid rate
curve

9

Our Goal (version 2)

 Given M processors and a set of N tasks
with total utilization summing to M, find a
feasible scheduling of tasks which
minimizes the number of context switches
and migrations

 This goal is ironic, since we started by
assuming that these operations are free

10

Greedy Scheduling Algorithms

 A Greedy Scheduling Algorithm will, at
various times, choose the M "best" jobs to
run. We need to specify:

 What does "best" mean? Earliest deadline?
Most work remaining?

 How often do all N jobs get compared to find
the M best?

11

Examples of Greedy Algorithms

 Earliest Deadline First (EDF)
 Schedule the M tasks with the earliest deadlines

 Least Laxity First (LLF)
 Laxity is a task's remaining possible idle time

before it must be scheduled in order to finish its
workload by its next deadline

12

Why Greedy Algorithms Fail
On Multiprocessors
 Example:

13

Why Greedy Algorithms Fail
On Multiprocessors

14

Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2

are scheduled first

15

Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2

are scheduled first

 Even at time t = 8, Tasks 1 and 2 are the
obvious greedy choices

16

Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2

are scheduled first

 Even at time t = 8, Tasks 1 and 2 are the
obvious greedy choices

 However, if Task 3 is not turned on at time
t = 8, one processor will sit idle between

 t = 9 and t = 10.

17

Why Greedy Algorithms Fail
On Multiprocessors
 Before t = 40, the two processors can do

80 units of work, and there are
 2 x (9 x 4) + 8 = 80 units of work to do.

If there is any idle time, not all deadlines
can be met.

 Greedy algorithms fail because they can't
see the "big picture."

18

Why Greedy Algorithms Fail
On Multiprocessors

19

Proportioned Algorithms
Succeed On Multiprocessors

20

Proportional Fairness

 Insight: Scheduling tasks is much easier
when they all have the same deadline

 Application: Give all task deadlines to all
jobs, and within each such time window,
assign each job work proportional to its
utilization

21

...isn't new...

 Previous proportional fairness algorithms:
 pfair (1994) - Baruah, Cohen, Plaxton, Varvel
 LLREF (2006) - Cho, Ravindran, Jensen
 EKG (2006) - Andersson, Tovar

 ... but they were all using proportional
fairness without understanding its
simplicity

22

Theorem 2: "3 Rules"
 Given a collection of tasks with total

utilization M, if all tasks are subdivided by
assigning all deadlines to all tasks, then a
scheduling algorithm within a single time
window will succeed if and only if:

 It always runs any job with zero laxity
 It never runs any job which is completed
 M distinct jobs are always running

23

Theorem 2: Proof

24

Theorem 2: Implications

 Once we've subdivided all jobs into "time
windows", with all system deadlines as
boundaries, correct scheduling goes from
being incredibly complicated to nearly
trivial.

 What is the simplest possible algorithm?

25

Stack-and-Slice (SNS)

 All time windows are, up to linear scaling,
equivalent, so normalize time window
length to 1

 All jobs now have work equal to their
utilization, and workloads add up to (no
more than) M

26

Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks

27

Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks

28

Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks

29

Stack-and-Slice (SNS)

30

SNS Performance

 N−1 context switches and M−1 migrations
per time window

 This is about 1/3 as many as the LLREF
algorithm, but somewhat more than EKG.
However, the computational overhead is
minimal compared to both.

31

Summary
 Multiprocessor scheduling suddenly

becomes very easy when all deadlines are
shared with all jobs.

 This ease is demonstrated by Stack-and-
Slice, the simplest known optimal
scheduling algorithm for this problem.

32

What's Next?
 The minimal restrictions imposed by the

"3 Rules" theorem leave lots of room to
develop more complicated algorithms to
further reduce context switches and
migrations

 How can we extend these ideas to variants
of this problem?

 Can we reduce the number of operations
enough to make a real implementation of
such a scheduler competitive?

33

Thanks for Listening
 Questions?

